[1] United States. Bureau of Reclamation. (2001). Water measurement manual. The Bureau, Chapters 5 and 7.
[2] Wu, S., & Rajaratnam, N. (1996). Submerged flow regimes of rectangular sharp-crested weirs. Journal of Hydraulic Engineering, 122(7), 412-414. doi: 10.1061/(ASCE)0733-9429(1996)122:7(412)
[3] Grant, D. M., & Dawson, B. D. (1995). Open Channel Flow Measurement Handbook. 4th Edition, Isco Environmental Division, Lincoln, NE.
[4] Bergmann, M. (1963). Special weirs, Water measurement manual. USBR Publication Report Number HYD-505 United States Bureau of Reclamation (USBR), USA, Chapter 7, Section 13.
[5] Martinez, J., Reca, J., Morillas, M. T., & Lopez, J. G. (2005). Design and calibration of a compound sharp-crested weir. Journal of Hydraulic Engineering, 131(2), 112-116. doi: 10.1061/(ASCE)0733-9429(2005)131:2(112)
[6] Jan, C. D., Chang, C. J., & Lee, M. H. (2006). Discussion of “Design and calibration of a compound sharp-crested weir” by J. Martinez, J. Reca, MT Morillas, and JG Lopez. Journal of Hydraulic Engineering, 132(8), 868-871. doi: 10.1061/(ASCE)0733-9429(2006)132:8(868)
[7] Mohammed, A. Y., Al-Talib, A. N., & Basheer, T. A. (2013). Simulation of flow over the side weir using simulink. Scientia Iranica, 20(4), 1094-1100. [In Persian]
[8] Aydin, I., Altan-Sakarya, A. B., & Sisman, C. (2011). Discharge formula for rectangular sharp-crested weirs. Flow Measurement and Instrumentation, 22(2), 144-151. doi: 10.1016/j.flowmeasinst.2011.01.003
[9] Lee, J. T., Chan, H. C., Huang, C. K., & Leu, J. M. (2012). Experiments on hydraulic relations for flow over a compound sharp-crested weir. International Journal of Physical Sciences, 7(14), 2229-2237. doi: 10.5897/IJPS11.1695
[10] Khassaf, S. I., Attiyah, A. N., & Al-Yousify, H. A. (2016). Experimental investigation of compound side weir with modeling using computational fluid dynamic. International Journal of Energy and Environment, 7(2), 169-178.
[11] Farzin, S., Karami, H., Yahyavi, F., & Nayyer, S. (2018). Numerical study of hydraulic characteristics around the vertical and diagonal sharp crested weirs using Flow3D simulation.. Civil Infrastructure Researches, 4(1), 15-24. doi: 10.22091/cer.2017.1661.1068 [In Persian]
[12] Samadi, A., & Arvanaghi, H. (2014). CFD simulation of flow over contracted compound arched rectangular sharp crested weirs. Iran University of Science & Technology, 4(4), 549-560.
[13] Altan‐Sakarya, A. B., Kokpinar, M. A., & Duru, A. (2020). Numerical modelling of contracted sharp‐crested weirs and combined weir and gate systems. Irrigation and Drainage, 69(4), 854-864. doi: 10.1002/ird.2468
[14] Majedi Asl, M., valizadeh, S., & Mohammad Taghizadeh, Y. (2021). Study of energy dissipation of gabion structure downstream of Ogee weir using laboratory and meta-model methods. Journal of Hydraulics, 16(4), 21-35. doi: 10.30482/jhyd.2021.285286.1526 [In Persian]
[15] Setyandito, O., Christian, S., & Lopa, R. T. (2022). Flow characteristics investigation on trapezoidal weir using FLOW 3D. In IOP Conference Series: Earth and Environmental Science, 998(1), 012013. IOP Publishing. doi: 10.1088/1755-1315/998/1/012013
[16] Dasineh, M., Ghaderi, A., Bagherzadeh, M., Ahmadi, M., & Kuriqi, A. (2021). Prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods. Mathematics, 9(23), 3135. doi: 10.3390/math9233135
[17] Bagherzadeh, M., Mousavi, F., Manafpour, M., Mirzaee, R., & Hoseini, K. (2022). Numerical simulation and application of soft computing in estimating vertical drop energy dissipation with horizontal serrated edge. Water Supply, 22(4), 4676-4689. doi: 10.2166/ws.2022.127
[18] Wang, Y., Wang, W., Hu, X., & Liu, F. (2018). Experimental and numerical research on trapezoidal sharp-crested side weirs. Flow Measurement and Instrumentation, 64, 83-89. doi: 10.1016/j.flowmeasinst.2018.10.005
[19] Flow Science Inc. (2016). FLOW-3D V 11.2 User’s Manual; Flow Science: Santa Fe, NM, USA.
[20] Yakhot, V. Orszag, S.A. Thangam, S. Gatski, T.B. and Speziale, C.G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4, 1510-1520. doi: 10.1063/1.858424
[21] Majedi-Asl, M., Daneshfaraz, R., Fuladipanah, M., Abraham, J., & Bagherzadeh, M. (2020). Simulation of bridge pier scour depth base on geometric characteristics and field data using support vector machine algorithm. Journal of Applied Research in Water and Wastewater, 7(2), 137-143. doi: 10.22126/arww.2021.5747.1189
[22] Daneshfaraz, R., Bagherzadeh, M., Ghaderi, A., Di Francesco, S., & Asl, M. M. (2021). Experimental investigation of gabion inclined drops as a sustainable solution for hydraulic energy loss. Ain Shams Engineering Journal, 12(4), 3451-3459. doi: 10.1016/j.asej.2021.03.013
Send comment about this article