[1] Arias-Trujillo, J., Matías-Sanchez, A., Cantero, B., & López-Querol, S. (2020). Effect of polymer emulsion on the bearing capacity of aeolian sand under extreme confinement conditions. Construction and Building Materials, 236, 117473. doi: 10.1016/j.conbuildmat.2019.117473
[2] Mohamedzein, Y., Al-Hashmi, A., Al-Abri, A., & Al-Shereiqi, A. (2019). Polymers for Stabilisation of Wahiba Dune Sands, Oman. Proc. of the Institution of Civil Engineers, Ground Improvement, 172(2), 76-84. doi: 10.1680/jgrim.17.00063
[3] Souza Júnior, P. L., Santos Junior, O. F., Fontoura, T. B., & Freitas Neto, O. (2020). Drained and Undrained Behavior of an Aeolian Sand from Natal, Brazil. Soils and Rocks, 43(2), 263-270. doi: 10.28927/SR.432263.
[4] Das, B. M., & Sivakugan, N. (2018). Principles of foundation engineering. Cengage learning.
[5] Al-Sanad, H. A., Ismael, N. F., & Nayfeh, A. J. (1993). Geotechnical properties of dune sands in Kuwait. Engineering Geology, 34(1-2), 45-52. doi: 10.1016/0013-7952(93)90042-B
[6] Seif, E. S. S. A., & Sedek, E. S. (2013). Performance of cement mortar made with fine aggregates of dune sand, Kharga Oasis, Western Desert, Egypt: an experimental study. Jordan Journal of Civil Engineering, 7(3), 270-284.
[7] Al-Taie, A. J., Al-Shakarchi, Y. J., & Mohammed, A. A. (2013). Investigation of geotechnical specifications of sand dune soil: a case study around Baiji in Iraq. IIUM Engineering Journal, 14(2). doi: 10.31436/iiumej.v14i2.408
[8] Khan, I. H. (1982). Soil studies for highway construction in arid zones. Engineering Geology, 19(1), 47-62. doi: 10.1016/0013-7952(82)90005-9
[9] Al-Ansary, M., Pöppelreiter, M. C., Al-Jabry, A., & Iyengar, S. R. (2012). Geological and physiochemical characterisation of construction sands in Qatar. International Journal of Sustainable Built Environment, 1(1), 64-84. doi: 10.1016/j.ijsbe.2012.07.001
[10] Padmakumar, G. P., Srinivas, K., Uday, K. V., Iyer, K. R., Pathak, P., Keshava, S. M., & Singh, D. N. (2012). Characterization of aeolian sands from Indian desert. Engineering Geology, 139, 38-49. doi: 10.1016/j.enggeo.2012.04.005
[11] Abu-Zeid, M. M., Baghdady, A. R., & El-Etr, H. A. (2001). Textural attributes, mineralogy and provenance of sand dune fields in the greater Al Ain area, United Arab Emirates. Journal of Arid Environments, 48(4), 475-499. doi: 10.1006/jare.2000.0776
[12] Elipe, M. G., & López-Querol, S. (2014). Aeolian sands: Characterization, options of improvement and possible employment in construction–The State-of-the-art. Construction and Building Materials, 73, 728-739. doi: 10.1016/j.conbuildmat.2014.10.008
[13] Venda Oliveira, P. J., da Costa, M. S., Costa, J. N., & Nobre, M. F. (2015). Comparison of the ability of two bacteria to improve the behavior of sandy soil. Journal of Materials in Civil Engineering, 27(1), 06014025. doi: 10.1061/(ASCE)MT.1943-5533.0001138
[14] Abbasi, N., & Mahdieh, M. (2018). Improvement of geotechnical properties of silty sand soils using natural pozzolan and lime. International Journal of Geo-Engineering, 9, 1-12. doi: 10.1186/s40703-018-0072-4
[15] Oliveira, P. J. V., & Rosa, J. A. (2020). Confined and unconfined behavior of a silty sand improved by the enzymatic bio cementation method. Transportation Geotechnics, 24, 100400. doi: 10.1016/jtrgeo.2020.100400
[16] Al-Aghbari, M. Y., & Dutta, R. K. (2005). Suitability of desert sand cement mixes for base courses in highway pavements. Electronic Journal of Geotechnical Engineering, 10 D.
[17] Moosavi, K., & Kalantari, B. (2011). Improving load bearing capacity of wind-blown sand using ordinary Portland cement. Electronic Journal of Geotechnical Engineering, 16, 1267-1274.
[18] AlKarni, A., & ElKholy, S. M. (2012). Improving geotechnical properties of dune sands through cement stabilization. Journal of Engineering and Computer Sciences, 5(1), 1-19.
[19] Lopez-Querol, S., Arias-Trujillo, J., GM-Elipe, M., Matias-Sanchez, M., & Cantero, B. (2017). Improvement of the Bearing Capacity of Confined and Unconfined Cement-Stabilized Aeolian Sand, Construction and Building Materials, 153, 374-384. doi: 10.1016/j.conbuildmat.2017.07.124
[20] Silva, J. D. J., Júnior, O. F. S., & Paiva, W. (2023). Compressive and Tensile Strength of Aeolian Sand Stabilized with Porcelain Polishing Waste and Hydrated lime, Soils and Rocks an International Journal of Geotechnical and Geo environmental Engineering, doi: 10.28927/SR.2023.002322
[21] Khodaparast, M., Rajabi, A. M., & Kabi, A. (2017). The study of strength behavior of sandy soil mixed with plastic waste and cement slurry. Civil Infrastructure Researches, 2(2), 43-49. doi: 10.22091/cer.2017.828
[22] Akili, W., & Monismith, C. L. (1978). Permanent Deformation Characteristics of Cement Emulsion Stabilized Sand, In Association of Asphalt Paving Technologists Proc, 47, 281-301.
[23] Al-Abdulwahhab, H., Bayomy, F., & Al-Halhouli, A. (1998). Evaluation of Emulsified Asphalt-Treated Sand for Low-Volume Road and Road Bases. Transportation Research Record, No. 1106. Fourth International Conference on Low-Volume Roads, 1, 71-80.
[24] Al-Abdullah, S. F. (2006). An Approach in Improving the Properties of Sand Dunes, J. Eng. 13, 930-939.
[25] Onyejekwe, S., & Ghataora, G. S. (2015). Soil stabilization using proprietary liquid chemical stabilizers: Sulphonated oil and a polymer. Bulletin of Engineering Geology and the Environment, 74, 651-665. doi: 10.1007/s10064-014-0667-8
[26] Lahalih, S. M., & Ahmed, N. (1998). Effect of New Soil Stabilizers on the Compressive Strength of Dune Sand, Construction and Building Materials, 12(6-7), 321-328. doi: 10.1016/S0950-0618(98)00024-5
[27] Freer Hewish, R. J., Hewish, R. J. F., Ghataora, G. S., & Niazi, Y. (1999). Stabilization of desert sand with cement kiln dust plus chemical additives in desert road construction. In Proceedings of the institution of civil engineers-transport, 135(1), 29-36. doi: 10.1680/itran.1999.31285
[28] Zandieh, A. R., & Yasrobi, S. S. (2010). Study of Factors Affecting the Compressive Strength of Sandy Soil Stabilized with Polymer, Geotechnical and Geological Engineering, 28, 139-145. doi: 10.1007/s10706-009-9287-7
[29] Ohama, Y. (1998). Polymer-based admixtures. Cement and concrete composites, 20(2-3), 189-212. doi: 10.1016/S0958-9465(97)00065-6
[30] Siddiqi, R. A., & Moore, C. J. (1981). Polymer stabilization of sandy soil for erosion contro. Transportation Research Records, 827, 30-34.
[31] Fungaroli, A. A., & Prager, S. R. (1969). Evaluation of some acrylic polymers as soil stabilizers. Industrial & Engineering Chemistry Product Research and Development, 8(4), 450-453. doi: 10.1021/i360032a026
[32] Onyejekwe, S., & Ghataora, G. S. (2016). Stabilization of quarry fines using a polymeric additive and Portland cement. Journal of Materials in Civil Engineering, 28(1), 04015070. doi: 10.1061/(ASCE)MT.1943-5533.0001324
[33] Anagnostopoulos, C. A., & Papaliangas, T. T. (2012). Experimental investigation of epoxy resin and sand mixes. Journal of Geotechnical and Geoenvironmental Engineering, 138(7), 841-849. doi: 10.1061/(ASCE)GT.1943-5606.0000648
[34] Gilazghi, S. T., Huang, J., Rezaeimalek, S., & Bin-Shafique, S. (2016). Stabilizing sulfate-rich high plasticity clay with moisture activated polymerization. Engineering Geology, 211, 171-178. doi: 10.1016/j.enggeo.2016.07.007
[35] Al-Khanbashi, A., & Abdalla, S. W. (2006). Evaluation of three waterborne polymers as stabilizers for sandy soil. Geotechnical and Geological Engineering, 24, 1603-1625. doi: 10.1007/s10706-005-4895-3
[36] Cabalar, A. F., Awraheem, M. H., & Khalaf, M. M. (2018). Geotechnical properties of a low-plasticity clay with biopolymer. Journal of materials in civil engineering, 30(8), 04018170. doi: 10.1061/(ASCE)MT.1943-5533.0002380
[37] Huang, W., Zhou, C., Liu, Z., Sun, H., Du, J., & Zhang, L. (2021). Improving soil-water characteristics and pore structure of silty soil using nano-aqueous polymer stabilizers. KSCE Journal for Civil Engineering, 25(9), 3298-3305. doi: 10.1007/s12205-021-2036-z
[38] Tadinfar, G., Tadinfar, V., & Kazemi, R. (2013). Improving the permeability of silty soils using vinyl acetate polymer, First National Conference on Soil Mechanics and Foundation Engineering, Tehran. [In Persian]
[39] Naeini, S. A. & Ghorbanalizadeh, M. (2010). Effect of wet and dry conditions on strength of silty sand soil stabilized with epoxy resin polymer, Journal of Applied Sciences, 10(22), 2839-2846. doi: 10.3923/jas.2010.2839.2846
[40] Welling, G. E. (2012). Engineering performance of polymer amended soils. California Polytechnic State University.
[41] Indraratna, B., Athukorala, R., & Vinod, J. (2013). Estimating the rate of erosion of a silty sand treated with lignosulfonate. Journal of Geotechnical and Geoenvironmental Engineering, 139(5), 701-714. doi: 10.1061/(ASCE)GT.1943-5606.0000766
[42] Chang, I., Im, J., & Cho, G. C. (2016). Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Canadian Geotechnical Journal, 53(10), 1658-1670. doi: 10.1139/cgj-2015-0475
[43] Lee, S., Chang, I., Chung, M. K., Kim, Y., & Kee, J. (2017). Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing. Geomechanics and Engineering, 12(5), 831-847. doi: 10.12989/gae.2017.12.5.8
[44] Malidarreh, N. R., Shooshpasha, I., Mirhosseini, S. M., & Dehestani, M. (2018). Effects of reinforcement on mechanical behaviour of cement treated sand using direct shear and triaxial tests. International Journal of Geotechnical Engineering, 12(5), 491-499. doi: 10.1080/19386362.2017.1298300
[45] Hajiannejad Z., Karamati M., Alinjad M., & Naderi, R. (2019). Investigation of the shear strength of sand soil of Bandar Anzali reinforced with polyethylene terephthalate (PET). Amir Kabir Civil Engineering Journal, 52(12), 3183-3202. doi: 10.22060/ceej.2019.16281.6181 [In Persian]
[46] Liu, J., Song, Z., Lu, Y., Wang, Q., Kong, F., Bu, F., ... & Sun, S. (2018). Improvement effect of water-based organic polymer on the strength properties of fiber glass reinforced sand. Polymers, 10(8), 836. doi: 10.3390/polym10080836
[47] Oldham, J. C., Eaves, R. C., & White, D. W. (1977). Materials evaluated as potential soil stabilizers. Department of Defense, Department of the Army, Corps of Engineers, Waterways Experiment Station, Soils and Pavements Laboratory.
[48] Zandieh, A., Yasrebi, S., & Mortezaei, M. (2006). Investigation of the effect of humidity on uniaxial samples stabilized with polymer. 3th National Engineering Congress. [In Persian]
[49] Barezi, S., Vafaian, M., & Abtahi, M. (2009). Stabilization of granular soils with liquid polymers, 5th National Congress of Civil Engineering, Mashhad. [In Persian]
[50] Freitag, D. R. (1986). Soil randomly reinforced with fibers. Journal of Geotechnical Engineering, 112(8), 823-826. doi: 10.1061/(ASCE)0733-9410(1986)112:8(823)
[51] Moustafa, A., Bazaraa, A., & Nour El Din, A. (1981). Soil stabilization by polymeric materials. Macromolecular Materials and Engineering, 97(1), 1-12. doi: 10.1002/apmc.1981.050970101
[52] Janalizadeh, A., Rabiei, A., & Absari, M. (2014). Investigating the effect of adding water-soluble polymer on the mechanical parameters of kaolinite clay. 2th National Conference on Soil Mechanics and Earth Engineering. [In Persian]
[53] Ahmadi Mutlaq, P., & Soltani Jikeh, H. (2016). Investigating the effect of liquid polymer on the undrained behavior of sandy soil using a triaxial device. Master's thesis, Shahid Madani University of Azerbaijan, Faculty of Engineering and Technology. [In Persian]
[54] Yao, X., Huang, G., Wang, M., & Dong, X. (2021). Mechanical properties and microstructure of PVA fiber reinforced cemented soil. KSCE Journal of Civil Engineering, 25, 482-491. doi: 10.1007/s12205-020-0998-x
[55] Hata, T., Saracho, A. C., Guharay, A., & Haigh, S. K. )2020(. Strength characterization of cohesionless soil treated with cement and polyvinyl alcohol. Soils and foundations, 62(6), 10123. doi: 10.1016/j.sandf.2022.101238
[56] Damyar, B., Dehnad, M.H., Zanjirani Farahani, H., (2021). “Performance investigation of modified bitumen with ethylene-vinyl acetate polymer and rubber powder by performing classical and superpave tests." Civil Infrastructure Researches. 6(2), 39-48. doi: 10.22091/cer.2021.6588.1229 [In Persian]
[57] ASTM D422-63. (1998). Standard test method for particle-size analysis of soils. Annual Book of ASTM Standards.
[58] ASTM D854-14. (2014). Standard test methods for specific gravity of soil solids by water pycnometer. Annual Book of ASTM Standards.
[59] ASTM D698-07. (2007). Standard test methods for laboratory compaction characteristics of soil using standard effort. Annual Book of ASTM Standards.
[60] ASTM D1883-16. (2016). Standard test method for unconfined compressive strength of cohesive soil. Annual Book of ASTM Standards.
[61] Barzi, S., Vafaian, M., & Abtahi, M. (2009). Stabilization of granular soils with liquid polymers. 5th National Congress of Civil Engineering, Mashhad. [In Persian]
Send comment about this article