[1] Fielding, C. R., Alexander, J., & Allen, J. P. (2018). The role of discharge variability in the formation and preservation of alluvial sediment bodies, Sedimentary Geology, 365, 1-20. doi: 10.1016/j.sedgeo.2017.12.022
[2] Hassan, M. A., Egozi, R., & Parker, G. (2006). Experiments on the effect of hydrograph characteristics on vertical grain sorting in gravel bed rivers, Water Resour. Res., 42, W09408. doi: 10.1029/2005WR004707
[3] Billi, P. (2011). Flash flood sediment transport in a steep sand-bed ephemeral stream, International Journal of Sediment Research. 26(2), 193-209. doi: 10.1016/S1001-6279(11)60086-3
[4] Reid, I., Laronne, J. B., & Powell, D. M. (1998). Flash-flood and bedload dynamics of desert gravel-bed streams, Hydrological Processes, 12(4), 543-557. doi: 10.1002/(SICI)1099-1085(19980330)12:4<543::AID-HYP593>3.0.CO;2-C
[5] Sui, J., Koehler, G., & Krol, F. (2010). Characteristics of rainfall, snowmelt and runoff in the headwater region of the main river watershed in Germany”, Water resources management, 24, 2167-2186. doi: 10.1007/s11269-009-9545-8
[6] Kampf, S.K., & Lefsky, M.A. (2016). Transition of dominant peak flow source from snowmelt to rainfall along the Colorado Front Range: Historical patterns, trends, and lessons from the 2013 Colorado Front Range floods, Water Resources Research, 52(1), 407-422. doi: 10.1002/2015WR017784
[7] Sobhkhiz, R., & Mardookhpour, A. (2019). Numerical Simulation of the Effect of Pile Geometry and Foundation on Local Scour in Inclined Bridge Group Pier, Civil Infrastructure Researches, 5(1), 147-164. doi: 10.22091/cer.2019.4278.1149 [In Persian]
[8] Chang, W. Y., Lai, J. S., & Yen, C. L. (2004). Evaluation of scour depth at circular bridge piers, Journal of Hydraulic Engineering, 130(9), 905-913. doi: 10.1061/(ASCE)0733-9429(2004)130:9(905)
[9] Oliveto, G., & Hager, W. H. (2005). Further results to time-dependent local scour at bridge elements, Journal of Hydraulic Engineering, 131(2), 97-105. doi: 10.1061/(ASCE)0733-9429(2005)131:2(97)
[10] Mao, L. (2012). The effect of hydrographs on bed load transport and bed sediment spatial arrangement, Journal of Geophysical Research, 117, F03024. doi: 10.1029/2012JF002428
[11] Karimiaei Tabarestani, M., & Zarati, A. (2014). Effect of flood hydrograph peak time on local scour around the bridge pier, Journal of Hydraulics, 9(3), 15-32. doi: 10.30482/jhyd.2014.10173 [In Persian]
[12] Martin, R. L., & Jerolmack, D. J. (2013). Origin of hysteresis in bed form response to unsteady flows, Water Resources Research, 49(3):1314-1333. doi: 10.1002/wrcr.20093
[13] Waters, K. A., & Curran, J. C. (2015). Linking bed morphology changes of two sediment mixtures to sediment transport predictions in unsteady flows, Water Resources Research, 51(4), 2742-2741. doi: 10.1002/2014WR016083
[14] Plumb, B. D., JWez, C., Annable, W. K., McKie, C. W., & Franca, M. J. (2020). The impact of hydrograph variability and frequency on sediment transport dynamics in a gravel-bed flume, Earth Surface Processes and Landforms, 45(4), 816-830. doi: 10.1002/esp.4770
[15] Tabarestani, M. K., Zarrati, A. R. (2015). Sediment transport during flood event: A review, International Journal of Environmental Science and Technology, 12, 775-788. doi: 10.1007/s13762-014-0689-6
[16] Duan, Z., Chen, J., Jiang, C., Liu, X., & Zhao, B. (2020). Experimental Study on Uniform and Mixed Bed-Load Sediment Transport under Unsteady Flow, Applied Sciences, 10(6), 2002. doi: 10.3390/app10062002
[17] De Sutter, R., Verhoeven, R., & Krein, A. (2001). Simulation of sediment transport during flood events: Laboratory work and field experiments, Hydrological Sciences Journal, 46(4), 599-610. doi: 10.1080/02626660109492853
[18] Lee, K. T., Liu, Y. L., and Cheng, K. H. (2004). Experimental investigation of bedload transport processes under unsteady flow conditions, Hydrological Processes, 18(13), 2439-2454. doi: 10.1002/hyp.1473
[19] Warmink, J. J., Schielen, R. M. J., & Dohmen‐Janssen, C. M. (2012). Bed form evolution under varying discharges, flume versus fields, In Proceedings River Flow 2012, Costa Rica.
[20] Guney, M. S., Bombar, G., & Aksoy, A. O. (2013). Experimental study of the coarse surface development effect on the bimodal bed-load transport under unsteady flow conditions, Journal of Hydraulic Engineering, 139, 12-21. doi: 10.1061/(ASCE)HY.1943-7900.0000640
[21] Phillips, C. B., Hill, K. M., Paola, C., Singer, M. B., & Jerolmack, D. J. (2018). Effect of flood hydrograph duration, magnitude, and shape on bed load transport dynamics, Geophysical Research Letters, 45(16), 8264-8271. doi: 10.1029/2018GL078976
[22] Bombar, G., Elçi, Ş., Tayfur, G., Güney, M. Ş., & Bor, A. (2011). Experimental and numerical investigation of bed-load transport under unsteady flows, Journal of Hydraulic Engineering, 137(10), 1276-1282. doi: 10.1061/(ASCE)HY.1943-7900.0000412
[23] Mrokowska, M. M., Rowinski, P. M., Ksiazek, L., Struzynski, A., Wyrebek, M., & Radecki-Pawlik, A. (2018). Laboratory studies on bedload transport under unsteady flow conditions, Journal of Hydrology and Hydromechanics, 66(1), 23-31. doi: 10.1515/johh-2017-0032
[24] Humphries, R., Venditti, J. G., Sklar, L. S., & Wooster, J. K. (2012). Experimental evidence for the effect of hydrographs on sediment pulse dynamics in gravel-bedded rivers, Water Resources Research, 48, W01533. doi: 10.1029/2011WR010419
[25] Wang, L., Cuthbertson, A. J. S., Pender, G., & Cao, Z. (2015). Experimental investigations of graded sediment transport under unsteady flow hydrographs, International Journal of Sediment Research, 30(4), 306-320. doi: 10.1016/j.ijsrc.2015.03.010
[26] Li, Z., Qian, H., Cao, Z., Liu, H., Pender, G., & Hu, P. (2018). Enhanced bed load sediment transport by unsteady flows in a degrading channel, International Journal of Sediment Research, 33(3), 327-339. doi: 10.1016/j.ijsrc.2018.03.002
[27] Wang, L., Cuthbertson, A., Pender, G., & Zhong, D. (2019). Bed load sediment transport and morphological evolution in a degrading uniform sediment channel under unsteady flow hydrographs, Water Resources Research, 55(7), 5431-5452. doi: 10.1029/2018WR024413.
[28] Khajavi, M., Kashefipour, S. M., & Bejestan, M. S. (2022). Bridge Abutment Protection against Scouring for Unsteady Flow Conditions, Periodica Polytechnica Civil Engineering, 66(1), 310-322. doi: 10.3311/PPci.18892
[29] Fang, H. W., Chen, M. H., & Chen, Q. H. (2008). One-dimensional numerical simulation of non-uniform sediment transport under unsteady flows, International Journal of Sediment Research, 23(4), 316-328. doi: 10.1016/S1001-6279(09)60003-2
[30] Bai, Y., & Duan, J. G. (2014). Simulating unsteady flow and sediment transport in vegetated channel network, Journal of hydrology, 515, 90-102. doi: 10.1016/j.jhydrol.2014.04.030
[31] Ghosh, A., Roy, M. B., Roy, P. K., & Mukherjee, S. (2021). Assessing the nature of sediment transport with bridge scour by 1D sediment transport model in the sub-catchment basin of Bhagirathi-Hooghly river, Modeling Earth Systems and Environment, 7(4), 2823-2845. doi: 10.1007/s40808-020-01058-4
[32] Caviedes-Voullieme, D., Morales-Hernandez, M., Juez, C., Lacasta, A., & Garcia-Navarro, P. (2017). Two-Dimensional Numerical Simulation of Bed-Load Transport of a Finite-Depth Sediment Layer: Applications to Channel Flushing, Journal of Hydraulic Engineering, 143(9), 04017034. doi: 10.1061/(ASCE)HY.1943-7900.0001337
[33] Soares-Frazao, S., & Zech, Y. (2011). HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water flow on erodible bed, International journal for numerical methods in fluids, 66(8), 1019-1036. doi: 10.1002/fld.2300
[34] Lai, Y. G., Liu, X., Bombardelli, F. A., & Song, Y. (2022). Three-Dimensional Numerical Modeling of Local Scour: A State-of-the-Art Review and Perspective, Journal of Hydraulic Engineering, 148(11), 03122002. doi: 10.1061/(ASCE)HY.1943-7900.0002019
[35] Sisinggih, D., Wahyuni, S., & Rasyid, A. (2021). Flow and sediment transport in a sharp river bend using a 3D-RANS model, In IOP Conference Series: Earth and Environmental Science, 930(1), 012033. doi: 10.1088/1755-1315/930/1/012033
[36] ASCE. (2008). Sedimentation engineering manuals and reports on engineering practice 110, American Society of Civil Engineers.
[37] Brownlie, W. R. (1981). Prediction of flow depth and sediment discharge in open channels, Keck Laboratory of Hydraulics & Water Resources, Caltech. doi: 10.7907/Z9KP803R
[38] Ahanger, M. A., Asawa, G. L., & Lone, M. A. (2008). Experimental study of sediment transport hysteresis, Journal of Hydraulic Research, 46(5), 628-635. doi: 10.3826/jhr.2008.3185
[39] Williams, G. P. (1989). Sediment concentrations versus water discharge during single hydrologic events in rivers, Journal of Hydrology, 111(1), 89-106. doi: 10.1016/0022-1694(89)90254-0
[40] Reesink, A. J. H., & Bridge, J. S. (2007). Influence of superimposed bedforms and flow unsteadiness on formation of cross strata in dunes and unit bars, Sedimentary Geology, 202(1), 281-296. doi: 10.1016/j.sedgeo.2007.02.005
[41] Reesink, A. J. H., & Bridge, J. S. (2009). Influence of superimposed bedforms and flow unsteadiness on formation of cross strata in dunes and unit bars- part 2, further experiments, Sedimentary Geology, 222(3), 274-300. doi: 10.1016/j.sedgeo.2009.09.014
[42] Reesink, A. J. H., Parsons, D., Ashworth, P., Hardy, R., Best, J., Unsworth, C., McLelland, S., & Murphy, B. (2013). The response and hysteresis of alluvial dunes under transient flow conditions, In Mar. River Dunes 2013, Conf. Proc, 220, 215.
[43] Wang, L., Cuthbertson, A. J., Zhang, S. H., Pender, G., Shu, A. P., & Wang, Y. Q. (2021). Graded bed load transport in sediment supply limited channels under unsteady flow hydrographs. Journal of Hydrology, 595, 126015. doi: 10.1016/j.jhydrol.2021.126015
[44] Gunsolus, E. H., & Binns, A. D. (2018). Effect of morphologic and hydraulic factors on hysteresis of sediment transport rates in alluvial streams, River Research and Applications, 34(2), 183-192. doi: 10.1002/rra.3184
[45] Yen, C. L. & Lee, K. T. (1995). Bed topography and sediment sorting in channel bend with unsteady flow, Journal of Hydraulic Engineering, 121(8), 591-599. doi: 10.1061/(ASCE)0733-9429(1995)121:8(591)
[46] Graf, W. H., & Suszka, L. (1985). Unsteady flow and its effect on sediment transport, In 21st IAHR congress, 539-544.
[47] Suszka, L. (1988). Sediment transport at steady and unsteady flow: a laboratory study, EPFL, 704. doi: 10.5075/epfl-thesis-704
[48] Vanoni, V. A., & Brooks, N. H. (1957). Laboratory studies of the roughness and suspended load of alluvial streams, 11, US Army Engineer Division, Missouri River.
Send comment about this article