[1] Lin, K. C., Lin, C. C. J., Chen, J. Y., & Chang, H. Y. (2010). Seismic reliability of steel framed buildings. Structural safety, 32(3), 174-182. doi: 10.1016/j.strusafe.2009.11.001
[2] Priestley, M. J. N., Calvi, G. M., & Kowalsky, M. J. (2007). Direct displacement-based seismic design of structures. In NZSEE conference, 1-23.
[3] Tzimas, A. S., Karavasilis, T. L., Bazeos, N., & Beskos, D. E. (2013). A hybrid force/displacement seismic design method for steel building frames. Engineering Structures, 56, 1452-1463. doi: 10.1016/j.engstruct.2013.07.014
[4] Gupta, A., & Krawinkler, H. (2000). Estimation of seismic drift demands for frame structures. Earthquake Engineering & Structural Dynamics, 29(9), 1287-1305. doi: 10.1002/1096-9845(200009)29:9<1287::AID-EQE971>3.0.CO;2-B
[5] Haddad Shargh, F., & Hosseini, M. (2011). An Optimal Distribution of Stiffness over the Height of Shear Buildings to Minimize the Seismic Input Energy. Journal of Seismology and Earthquake Engineering, 13(1), 25-32.
[6] Karavasilis, T. L., Makris, N., Bazeos, N., & Beskos, D. E. (2010). Dimensional response analysis of multistory regular steel MRF subjected to pulselike earthquake ground motions. Journal of structural engineering, 136(8), 921-932. doi: 10.1061/(ASCE)ST.1943-541X.0000193
[7] Sehhati, R., Rodriguez-Marek, A., ElGawady, M., & Cofer, W. F. (2011). Effects of near-fault ground motions and equivalent pulses on multi-story structures. Engineering Structures, 33(3), 767-779. doi: 10.1016/j.engstruct.2010.11.032
[8] Zamani, A. M., Pahlavan, H., Shamekhi Amiri, M., & Rafiee, F. (2022). Probabilistic Seismic Assessment of RC Tall Regular Buildings Having Special Moment Frames Subjected to Long-period Earthquakes. Journal of Structural and Construction Engineering, 8(4), 270-291. doi: 10.22065/jsce.2021.281122.2421 [In Persian]
[9] Daneshjo, F., & Badarlo, B. (2008). Nonlinear Dynamic Behavior of Off-Axis Steel Frames under the Influence of Near-Fault Earthquakes. Structure and Steel, 4(2), [In Persian]
[10] Monfaredi, S. (2019). Investigating the Effect of the Location of the Building in Relation to the Fault on the Amount of Damage to the Structure in the Area Near the Fault, Anoshirvan University. [In Persian]
[11] Goudarzi, F., Saberi, V., Saberi, H., & Sadeghi, A. (2020). Investigation the Pulse Period Effect on Seismic Damage Distribution Pattern in Special Steel Moment-Resisting Frame Structures. Journal of Structure & Steel, 14(30), 5-18. doi: 20.1001.1.1735515.1399.1399.30.2.3 [In Persian]
[12] Siahpolo, N., Gerami, M., & VahdanI, R. (2022). Evaluation of the Inelastic Deformation Demands in Regular Steel Frames by Comparing the Results of the Pushover Method with the Nonlinear Time Histories Analysis Under the Near-Fault Pulse-type Earthquake. Journal of Civil and Environmental Engineering, 52(106), 93-108. doi: 10.22034/jcee.2019.9255 [In Persian]
[13] Razi, M., Gerami, M., Vahdani, R., & Farrokhshahi, F. (2019). Seismic Fragility Assessment of Steel SMRF Structures under Various Types of Near and Far Fault Ground Motions. Journal of Rehabilitation in Civil Engineering, 7(2), 86-100. doi: 10.22075/jrce.2018.11039.1179 [In Persian]
[14] Pacific Earthquake Engineering Research Center (PEER). Available from: https://ngawest2.berkeley.edu.
[15] Road, Housing and Urban Development Research Center. Available from: https://www.bhrc.ac.ir.
[16] SeismoStruct (2021). A computer program for static and dynamic nonlinear analysis of framed structures, SeismoSoft's Ltd.
[17] Leyendecker, E. V., Hunt, R. J., Frankel, A. D., & Rukstales, K. S. (2000). Development of maximum considered earthquake ground motion maps. Earthquake Spectra, 16(1), 21-40. doi: 10.1193/1.1586081
[18] Shahi, S. K., & Baker, J. W. (2014). An efficient algorithm to identify strongâvelocity pulses in multicomponent ground motions. Bulletin of the Seismological Society of America, 104(5), 2456-2466. doi: 10.1785/0120130191
[19] Kumar, M., Stafford, P. J., & Elghazouli, A. Y. (2013). Influence of ground motion characteristics on drift demands in steel moment frames designed to Eurocode 8. Engineering structures, 52, 502-517. doi: 10.1016/j.engstruct.2013.03.010
[20] Scott, M. H., & Fenves, G. L. (2006). Plastic hinge integration methods for force-based beam–column elements. Journal of Structural Engineering, 132(2), 244-252. doi: 10.1061/(ASCE)0733-9445(2006)132:2(244)
[21] Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
[22] Silva Moura Pinho, R. J., & Elnashai, A. S. (2000). Dynamic collapse testing of a full-scale four storey RC frame. ISET Journal of earthquake Technology, 37, 143-164.
Send comment about this article