[1] Daneshfaraz, R., Majedi-Asl, M., Mortazavi, S., & Bagherzadeh, M. (2022). Laboratory evaluation of energy dissipation in the combined structure of the vertical drop with gabion, Civil Infrastructure Researches, 8(1), 145-157. doi: 10.22091/cer.2022.7720.1344 [In Persian]
[2] Bakhmeteff, M.W. (1932). Hydraulics of open channels, New York and London, McGraw-Hill book No. 627.13 B34.
[3] Rand, W. (1955). Flow geometry at straight drop spillways, In Proceedings of the American Society of Civil Engineers, 81(9), 1-13.
[4] Gill, M. A. (1979). Hydraulics of rectangular vertical drop structures, Journal of Hydraulic Research, 17(4), 289-302. doi: 10.1080/00221688009499542
[5] Rajaratnam, N., & Chamani, M. R. (1995). Energy loss at drops, Journal of Hydraulic Research, 33(3), 373-384. doi: 10.1080/00221689509498578
[6] Esen, I. I., Alhumoud, J. M., & Hannan, K. A. (2004). Energy loss at a drop structure with a step at the base, Water international, 29(4), 523-529. doi: 10.1080/02508060408691816
[7] Hong, Y. M., Huang, H. S., & Wan, S. (2010). Drop characteristics of free-falling nappe for aerated straight-drop spillway, Journal of Hydraulic Research, 48(1), 125-129. doi: 10.1080/00221680903568683
[8] Liu, S. I., Chen, J. Y., Hong, Y. M., Huang, H. S., & Raikar, R. V. (2014). Impact characteristics of free over-fall in pool zone with upstream bed slope, Journal of Marine Science and Technology, 22(4), 476-486. doi: 10.6119/JMST-013-0604-1
[9] Robinson, K. M., Hanson, G. J., & Cook, K. R. (2002). Scour below an overfall: Part I. Investigation, Transactions of the ASAE, 45(4), 949-956. doi: 10.13031/2013.9947
[10] Dey, S., & Raikar, R. V. (2007). Scour below a high vertical drop, Journal of Hydraulic Engineering, 133(5), 564-568. doi: 10.1061/(ASCE)0733-9429(2007)133:5(564)
[11] Ghodsian, M., Mehraein, M., & Ranjbar, H. R. (2012). Local scour due to free fall jets in non-uniform sediment, Scientia Iranica, 19(6), 1437-1444. doi: 10.1016/j.scient.2012.10.008
[12] Emiroglu, M. E., & Tuna, M. C. (2011). The effect of tailwater depth on the local scour downstream of stepped-chutes, KSCE Journal of Civil Engineering, 15(5), 907-915. doi: 10.1007/s12205-011-0921-6
[13] Chen, J. Y., Hsu, H. H., & Hong, Y. M. (2016). The influence of upstream slope on the local scour at drop structure, Journal of Mountain Science, 13(12), 2237-2248. doi: 10.1007/s11629-015-3790-5
[14] Maleki, S., & Fiorotto, V. (2019). Scour due to a Falling Plane Jet: A Comprehensive Approach, Journal of Hydraulic Engineering, 145(4), 04019008. doi: 10.1061/(ASCE)HY.1943-7900.0001564
[15] Akib, S., Mohammadhassani, M., & Jahangirzadeh, A. (2014). Application of ANFIS and LR in prediction of scour depth in bridges, Computers & Fluids, 91, 77-86. doi: 10.1016/j.compfluid.2013.12.004
[16] Roushangar, K., & Koosheh, A. (2015). Evaluation of GA-SVR method for modeling bed load transport in gravel-bed Rivers, Journal of Hydrology, 527, 1142-1152. doi: 10.1016/j.jhydrol.2015.06.006
[17] Hoang, N. D., Liao, K. W., & Tran, X. L. (2018). Estimation of scour depth at bridges with complex pier foundations using support vector regression integrated with feature selection, Journal of Civil Structural Health Monitoring, 8(3), 431-442. doi: 10.1007/s13349-018-0287-2
[18] Naderpour, H., Rafiean, A. H., & Fakharian, P. (2018). Compressive strength prediction of environmentally friendly concrete using artificial neural networks, Journal of Building Engineering, 16, 213-219. doi: 10.1016/j.jobe.2018.01.007
[19] Majedi-Asl, M., Daneshfaraz, R., Fuladipanah, M., Abraham, J., & Bagherzadeh, M. (2020). Simulation of bridge pier scour depth base on geometric characteristics and field data using support vector machine algorithm, Journal of Applied Research in Water and Wastewater, 7(2), 137-143. doi: 10.22126/arww.2021.5747.1189
[20] Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R., & Abraham, J. (2021). Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens, Water Supply, 21(1), 217-231. doi: 10.2166/ws.2020.279
[21] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., & Bagherzadeh, M. (2021b). SVM performance for predicting the effect of horizontal screen diameters on the hydraulic parameters of a vertical drop, Applied sciences, 11(9), 4238. doi: 10.3390/app11094238
[22] Bagherzadeh, M., Mousavi, F., Manafpour, M., Mirzaee, R., & Hoseini, K. (2022). Numerical simulation and application of soft computing in estimating vertical drop energy “dissipation with horizontal serrated edge”, Water Supply, 22(4), 4676-4689. doi: 10.2166/ws.2022.127
[23] Asadi, M. E., Naeeni, S. T. O., & Kerachian, R. (2022). The effects of splitters on the downstream scour hole of overflow spillways: application of support vector regression, Water Supply, 22(2), 1905-1929. doi: 10.2166/ws.2021.310
[24] Roushangar, K., Alami, M. T., Shiri, J., & Asl, M. M. (2018). “Determining discharge coefficient of labyrinth and arced labyrinth weirs using support vector machine”, Hydrology Research, 49(3), 924-938. doi: 10.2166/nh.2017.214
[25] Vapnik, V. (1998). Statistical learning theory Wiley. New York, 1, ISBN: 978-0-471-03003-4.
[26] Dasineh, M., Ghaderi, A., Bagherzadeh, M., Ahmadi, M., & Kuriqi, A. (2021). “Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods”, Mathematics, 9(23), 31-35. doi: 10.3390/math9233135
[27] Breiman, L. (1999). Random forests; uc berkeley tr567. University of California: Berkeley, CA, USA.
Send comment about this article