[1] Batis, G., Pantazopoulou, P., Tsivilis, S., & Badogiannis, E. (2005). The effect of metakaolin on the corrosion behavior of cement mortars. Cement and concrete composites, 27(1), 125-130.
[2] Sakr, M. A., Shahin, M. A., & Metwally, Y. M. (2009). Utilization of lime for stabilizing soft clay soil of high organic content. Geotechnical and Geological Engineering, 27(1), 105-113.
[3] Hossain, K. M. A., & Mol, L. (2011). Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes. Construction and building Materials, 25(8), 3495-3501.
[4] Kolovos, K. G., Asteris, P. G., Cotsovos, D. M., Badogiannis, E., & Tsivilis, S. (2013). Mechanical properties of soilcrete mixtures modified with metakaolin. Construction and Building Materials, 47, 1026-1036.
[5] Al-Swaidani, A., Hammoud, I., & Meziab, A. (2016). Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 714-725.
[6] Wianglor, K., Sinthupinyo, S., Piyaworapaiboon, M., & Chaipanich, A. (2017). Effect of alkali-activated metakaolin cement on compressive strength of mortars. Applied Clay Science, 141, 272-279.
[7] Ghadir, P., & Ranjbar, N. (2018). Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188, 361-371.
[8] Harichane, K., Ghrici, M., & Kenai, S. (2018). Stabilization of Algerian clayey soils with natural pozzolana and lime. Periodica Polytechnica Civil Engineering, 62(1), 1-10.
[9] Alpaslan, B., & Yukselen, M. A. (2002). Remediation of lead contaminated soils by stabilization/solidification. Water, Air, and Soil Pollution, 133(1), 253-263.
[10] Resmi, G., Thampi, S. G., & Chandrakaran, S. (2011). Impact of lead contamination on the engineering properties of clayey soil. Journal of the Geological Society of India, 77(1), 42-46.
[11] Li, J. S., Xue, Q., Wang, P., & Li, Z. Z. (2015). Effect of lead (II) on the mechanical behavior and microstructure development of a Chinese clay. Applied Clay Science, 105, 192-199.
[12] Karkush, M. O., & Al-Taher, T. A. A. (2017). Geotechnical evaluation of clayey soil contaminated with industrial wastewater. Archives of civil engineering, 63(1).
[13] Abidoye, A. O., Afolayan, O. D., & Akinwumi, I. I. (2018). Effects of lead nitrate on the geotechnical properties of lateritic soils. International Journal of Civil Engineering and Technology, 9(7), 522-530.
[14] Chu, Y., Liu, S., Wang, F., Cai, G., & Bian, H. (2017). Estimation of heavy metal-contaminated soils’ mechanical characteristics using electrical resistivity. Environmental Science and Pollution Research, 24(15), 13561-13575.
[15] Sun, Y. J., Ma, J., Chen, Y. G., Tan, B. H., & Cheng, W. J. (2020). Mechanical behavior of copper-contaminated soil solidified/stabilized with carbide slag and metakaolin. Environmental Earth Sciences, 79(18), 1-13.
[16] Wang, L., Cho, D. W., Tsang, D. C., Cao, X., Hou, D., Shen, Z., ... & Poon, C. S. (2019). Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environment international, 126, 336-345.
[17] Wang, L., Chen, L., Tsang, D. C., Zhou, Y., Rinklebe, J., Song, H., ... & Ok, Y. S. (2019). Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environment international, 133, 105247.
[18] Zhou, X., Zhang, Z. F., Yang, H., Bao, C. J., Wang, J. S., Sun, Y. H., ... & Su, C. (2021). Red mud-metakaolin based cementitious material for remediation of arsenic pollution: Stabilization mechanism and leaching behavior of arsenic in lollingite. Journal of Environmental Management, 300, 113715.
Send comment about this article