[1] Thach, P. N., Liu, H. L., & Kong, G. Q. (2013). “Vibration analysis of pile-supported embankments under high-speed train passage”, Soil Dynamics and Earthquake Engineering, 55, 92-99.
[2] Leshchinsky, B., & Ling, H. I. (2013). “Numerical modeling of behavior of railway ballasted structure with geocell confinement”, Geotextiles and Geomembranes, 36, 33-43.
[3] Shahraki, M., & Witt, K. J. (2015). “Improvement of soft subgrade soil using stone columns for high-speed railway track”, In International Conference on Soft Ground Engineering (ICSGE2015), 3, 4.
[4] Indraratna, B., Nimbalkar, S. S., Ngo, N. T., & Neville, T. (2016). “Performance improvement of rail track substructure using artificial inclusions–Experimental and numerical studies”, Transportation Geotechnics, 8, 69-85.
[5] Gu, L. L., Ye, G. L., Bao, X. H., & Zhang, F. (2016). “Mechanical behaviour of piled-raft foundations subjected to high-speed train loading”, Soils and Foundations, 56(6), 1035-1054.
[6] Li, W., & Bian, X. (2016). “Dynamic performance of pile-supported bridge-embankment transition zones under high-speed train moving loads”, Procedia engineering, 143, 1059-1067.
[7] Abebe, M. S., & Qiu, H. S. (2016). “Numerical modeling of geotextile reinforcement of soft subgrade ballasted railway under high speed train”, Electronic Journal of Geotechnical Engineering, 21(12), 4327-4343.
[8] Yoo, C., & Kim, S. B. (2009). “Numerical modeling of geosynthetic-encased stone column-reinforced ground”, Geosynthetics International, 16(3), 116-126.
[9] Basack, S., Indraratna, B., Rujikiatkamjorn, C., & Siahaan, F. (2017). “Modeling the stone column behavior in soft ground with special emphasis on lateral deformation”, Journal of Geotechnical and Geoenvironmental Engineering, 143(6), 04017016.
[10] Tabchouche, S., Mellas, M., & Bouassida, M. (2017). “On settlement prediction of soft clay reinforced by a group of stone columns”, Innovative Infrastructure Solutions, 2(1), 1.
[11] Tan, X., Zhao, M., & Chen, W. (2018). “Numerical simulation of a single stone column in soft clay using the discrete-element method”, International Journal of Geomechanics, 18(12), 04018176.
[12] Hosseinpour, I., Soriano, C., & Almeida, M. S. (2019). “A comparative study for the performance of encased granular columns”, Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 379-388.
[13] Remadna, A., Benmebarek, S., & Benmebarek, N. (2020). “Numerical Analyses of the Optimum Length for Stone Column Reinforced Foundation”, International Journal of Geosynthetics and Ground Engineering, 6(3), 1-12.
[14] Pandey, B. K., Rajesh, S., & Chandra, S. (2020). “Numerical evaluation of geogrid-encased stone columns in soft soil under embankment loading”, In Geo-Congress 2020: Foundations, Soil Improvement, and Erosion, Reston, VA: American Society of Civil Engineers, 543-551.
[15] Hataf, N., Nabipour, N., & Sadr, A. (2020). “Experimental and numerical study on the bearing capacity of encased stone columns”, International Journal of Geo-Engineering, 11(1), 1-19.
[16] Fayed, A. L., Sorour, T. M., & Shehata, H. F. (2017). “Study of the Behavior of Floating Stone Columns in Soft Clay Formations Using Numerical Modeling”, In International Congress and Exhibition Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology, pp. 236-251.
[17] Correia, A. G., Cunha, J., Marcelino, J., Caldeira, L., Varandas, J., Dimitrovová, Z., ... & Silva, M. (2007). “Dynamic analysis of rail track for high speed trains. 2D approach”, 5th Intl Worksop on Application of Computational Mechanics on Geotechnical Engineering, 4.
[18] Shahraki, M., Sadaghiani, M. R. S., Witt, K. J., & Meier, T. (2014). “3D modelling of train induced moving loads on an embankment”, Plaxis Bulletin, 36, 10-15.
Send comment about this article