[1] Kaveh, A., Azar, B. F., Hadidi, A., Sorochi, F. R., & Talatahari, S. (2010). “Performance-based seismic design of steel frames using ant colony optimization”, Journal of Constructional Steel Research, 66(4), 566-574.
[2] Hultman, M. (2010). Weight optimization of steel trusses by a genetic algorithm-size, shape and topology optimization according to Eurocode. TVBK-5176.
[3] Heerman, D. W. (1987). “Computer simulation methods in theoretical physics”, Applied Optics, 26(10), 1818.
[4] Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. John Wiley & Sons.
[5] Saka, M. P., & Kameshki, E. S. (1998). “Optimum design of nonlinear elastic framed domes”, Advances in Engineering Software, 29(7-9), 519-528.
[6] Erbatur, F., Hasançebi, O., Tütüncü, I., & Kılıç, H. (2000). “Optimal design of planar and space structures with genetic algorithms”, Computers & Structures, 75(2), 209-224.
[7] Pezeshk, S., Camp, C. V., & Chen, D. (2000). “Design of nonlinear framed structures using genetic optimization”, Journal of structural engineering, 126(3), 382-388.
[8] Fourie, P. C., & Groenwold, A. A. (2002). “The particle swarm optimization algorithm in size and shape optimization”, Structural and Multidisciplinary Optimization, 23(4), 259-267.
[9] Perez, R. L., & Behdinan, K. (2007). “Particle swarm approach for structural design optimization”, Computers & Structures, 85(19-20), 1579-1588.
[10] Camp, C. V., & Bichon, B. J. (2004). “Design of space trusses using ant colony optimization”, Journal of structural engineering, 130(5), 741-751.
[11] Kaveh, A., & Talatahari, S. (2010). “An improved ant colony optimization for the design of planar steel frames”, Engineering Structures, 32(3), 864-873.
[12] Karimi, F., & Vaez, S. R. H. (2019). “Two-stage optimal seismic design of steel moment frames using the LRFD-PBD method”, Journal of Constructional Steel Research, 155, 77-89.
[13] Fathali, M., Hoseini Vaez, S., Dehghani, E. (2019). “Modeling the link beam behavior to evaluate its performance according to FEMA 356 and calculating the target displacement of performance levels”, Civil Infrastructure Researches, 4(2), 47-60. doi: 10.22091/cer.2018.3193.1118
[14] Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE.
[15] Kaveh, A., & Talatahari, S. (2010). “An improved ant colony optimization for the design of planar steel frames”, Engineering Structures, 32(3), 864-873.
[16] Blum, C., & Roli, A. (2003). “Metaheuristics in combinatorial optimization: Overview and conceptual comparison”, ACM computing surveys (CSUR), 35(3), 268-308.
[17] Poli, R., Kennedy, J., & Blackwell, T. (2007). “Particle swarm optimization”, Swarm intelligence, 1(1), 33-57.
[18] Glover, F. (1977). “Heuristics for integer programming using surrogate constraints”, Decision sciences, 8(1), 156-166.
[19] Dorigo, M., & Gambardella, L. M. (1997). “Ant colony system: a cooperative learning approach to the traveling salesman problem”, IEEE Transactions on evolutionary computation, 1(1), 53-66.
[20] Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms with CD-Rom. Wiley-Interscience.
[21] Federal Emergency Management Agency, FEMA-273. NEHRP guideline for the seismic rehabilitation of buildings. Washington (DC): Building Seismic Safety Council; 1997.
[22] Federal Emergency Management Agency, FEMA-350. Recommended seismic design criteria for new steel moment-frame buildings. SAC Joint Venture, USA. 2000.
[23] FEMA-356.: Prestandard and Commentary for the Seismic Rehabilitation of Buildings American Society of Civil Engineers (2000)
[24] ATC-40.: Seismic Evaluation and Retrofit of Reinforced Concrete Buildings: Applied Technology Council (1996)
Send comment about this article